例如,假定我们正在看一部由日常生活构成的影片。倘若我们看到了溅起的水滴汇集在一起,而跳水运动员从水里向上升到跳板上;倘若我们看到花瓶的碎片凑成花瓶并通过空气跳回桌子上原来的地方;倘若我们看到地上的落叶自己集中起来并飞回树上各个枝枝桠桠上,那么,由于这一切都表明熵降低了,所以我们就知道,这一切完全同事物的正常次序相反,而那个影片肯定是倒过来放映的。事实上,当时间颠倒过来的时候,各种事件会变得那么古怪,因此,那种场面会使我们发笑。

这是个只牵涉到九个人、并且只容许有四个不同的运动方向的情形。在大多数自然过程中,我们却要碰到无数亿个可以用非常多种不同方式自由运动的原子。如果由于某种机会,这些原子在开始时有某种有序的排列,那么以后任何一种自由的无规运动、任何一种自发的变化,都必定会降低那种有序的程度,换句话说,就是会提高无序的程度。

这是一种令人忧虑的前景(假如第二定律确实在一切条件下都成立的话),但我们现在完全毋需恐慌。这个过程需要许多亿亿年才会终结,因此,不仅是在我们活着的时候,而且在整个人类存在的时候,甚至在地球还存在的时候,宇宙都会像目前这样继续存在下去。

在克劳修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向于消除的。让一个热物体同一个冷物体相接触,热就会以下面所说的方式流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止。如果把两个水库连接起来,并且其中一个水库的水平面高于另一个水库,那么,万有引力就会使一个水库的水面降低,而使另一个水面升高,直到两个水库的水面均等,而势能也取平为止。

假定有一束光投射在某一物体上。这个物体会吸收光,并且投下一个阴影。我们通过比较亮光和阴影,就看到那个物体。如果把一束电子投射到某一物体上,这个物体也将吸收电子,并投下一个“电子阴影”在使用电子束的情况下,要是我们想用眼睛直接去看它,那是很危险的。但是,我们可以用照相底片把物体拍摄下来。电子阴影可以告诉我们那个物体具有什么形状,要是物体的某些部分对电子的吸收比其他部分强一些或弱一些,那么,这种照片甚至还可以说明物体的一些细节。

当只有氢发生聚变时,在一定温度下产生的能量太少了,因此,要在实验室中让这种反应持续进行下去,就要求温度超过摄氏十亿度。不错,在太阳的中心是氢在发生聚变,而那里的温度只有15,000,000c,但是,在这样低的温度下,只有很小一部分氢参加聚变。但由于太阳上氢的数量极大,所以,尽管发生聚变的氢只占很小一部分,也已足以使太阳维持现有的辐射了。

各种径迹的这种复杂的组合对于原子核物理学家来说,就像雪地上各种动物留下的足迹对于有经验的猎人那样富有意义。从这些径迹的性质,物理学家就可以辨认出所碰到的是些什么粒子,或者指出他是否发现了某种全新的粒子。

中微子是在某些原子核反应中产生的,到目前为止,还没有一个原子物理学家能够测出它的质量。看来非常可能,中微子就像光子一样,静质量也等于零。

这种危险的大小完全取决于外层空间中宇宙线的活性有多大——特别是取决于那些质量确实很大的粒子的数量,因为大多数损害都是这类粒子造成的。过去美国和苏联已把许多人造卫星发射到外层空间去检测宇宙线的数量,看来在通常的条件下,宇宙线的数量不大,足以保证合理的安全要求。

不过,一个能量充分高的γ射线光子可以转变成一个电子-反电子对。这么一来,光子本身似乎既不是粒子,也不是反粒子,而是一下子就代表一个粒子-反粒子对。

即使有人想作一次表演,不惜倾家荡产去积集只能够产生1克物质的全部能量(并且这能量可能要比所需要的能量多好几倍,因为总会有一些必不可少的消耗),也还是无法做到这一点。事情很简单:所需要的能量既不可能足够快地全部产生出物质来,也不可能全部集中在一个一下子能产生出1克物质的充分小的体积里。